

Copyright 2008 Jennitta Andrea - Page 1

Copyright 2008 Jennitta Andrea

Envisioning the Next Generation
FTDD* Tools

*Functional Test Driven Development

jennitta@theandreagroup.ca www.theandreagroup.ca

This presentation was made on Tuesday, February 19 as part of the SQE web
presentation on Envisioning the Next Generation of Functional Test Tools
(http://www.sqe.com/Webseminars/Archive.aspx)

What’s wrong with this generation?

Tool Developers:

• not building what is needed

• feature / tool silos

Copyright 2008 Jennitta Andrea

Tool Users:

• not picking appropriate tool

• not using tool appropriately

It’s exciting to see automated functional testing tools flourish in the last few years.
I can remember starting on my first test driven development project in 2000, and
using junit for both functional and unit tests because there wasn’t a whole lot of

Copyright 2008 Jennitta Andrea - Page 2

choice at the time. On the next few projects I discovered several other tools that
were basically variations on the same junit theme. Then FIT came along and got
people thinking outside of the box. We soon had whole new generation of tools
that recognize that functional tests are fundamentally different from unit tests.
Interesting features and syntax have been popping up all over the place.

… so what’s the problem … why complain about “this generation” ….

Well I personally see teams continue to struggle … their functional tests are not
effective requirements specifications … the tests have become a maintenance
nightmare and a bottleneck to progress …. And ultimately the tests are being
abandoned. This isn’t just a tool issue, but often the problems start when a team
does not pick the right tool for their context.

Many different innovations are scattered through various tools. As excited as I
am to see these great ideas … it has become frustrating because I wanted them
all … in ONE TOOL. The problem we have today is not lack of innovation, but it
is in feature silos and lack of integration.

In most cases new ‘wiz-bang’ features are part of a tool that does not even
support the core requirements for functional test driven development. That’s why
I’d like to take a step back and perform a business process analysis of functional
test driven development in the hopes that it will help teams make better tool
choices, and help tool vendors to make better tools.

TDD: Red-Green-Refactor

FTDD

����TDD

Requirement

Project

Team

Other

Copyright 2008 Jennitta Andrea
Let’s start our business process analysis with a quick review of test-driven-
development. This process is referred to as Red-Green-Refactor.

Copyright 2008 Jennitta Andrea - Page 3

Red

test api

throw notImplementedException(“not started”)

����TDD

Requirement

Project

Team

Other

Copyright 2008 Jennitta Andrea

• The Red part of the cycle refers to creating tests that fail intentionally.

• The cycle starts with writing automated tests that describe a new or
enhanced capability. While the tests are being developed a minimal
skeleton of the API is created to enable tests to compile. Emphasis is on
correctness and completeness of the tests.

• Once the tests are finished, they are run to ensure that they fail due to
intentionally missing system code.

Copyright 2008 Jennitta Andrea - Page 4

Green

test api
business

logic

����TDD

Requirement

Project

Team

Other

Copyright 2008 Jennitta Andrea

• The Green part of the cycle refers to getting the tests to pass.

• The focus shifts from the tests to the system code. The API and
underlying business logic are implemented just enough to cause the tests
to pass.

• While the code is being developed, the tests are run frequently to gauge
progress; we’re done when the tests are green.

Copyright 2008 Jennitta Andrea - Page 5

Refactor

business

logic
test api

����TDD

Requirement

Project

Team

Other

Copyright 2008 Jennitta Andrea

The term refactoring refers to a disciplined step-by-step process of cleaning up
the code while preserving the original behavior. Refactoring should occur only
when the system is in a known state of stability, such as when all of the tests are
passing. The test suite is re-run after every micro-refactoring step to ensure this
stability is preserved.

Beyond Red-Green-Refactor

FTDD

Requirement Specification

Project Characteristics

Team Characteristics

Other Needs

����TDD

Requirement

Project

Team

Other

Copyright 2008 Jennitta Andrea

Copyright 2008 Jennitta Andrea - Page 6

The Red-Green-Refactor cycle is at the heart of FTDD, but teams must go
beyond that simple view in order to experience the full potential. Tools must also
go beyond Red-Green-Factor, and move toward supporting the full business
process:

• Functional tests act as concrete examples of business rules, and thus are
a key requirements artifact

• Each project and team are unique … one tool will not fit all situations …
and on the flip side any-old tool will not necessarily be a good fit for a
situation.

• Functional Test Driven Development goes beyond the core development
project team. We can make significant contributions to other processes
and roles within the big picture.

FTDD: Big Picture

Business Process

User Stories

Functional Tests

Unit Tests (API)

Unit Tests (detail)

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactor

red

green

refactorr

red

green

refactor

red

green

refactor

red

green

refactor

����TDD

Requirement

Project

Team

Other

Copyright 2008 Jennitta Andrea

• Red-Green-Refactor is the TDD heartbeat.

• The full TDD cycle builds of multiple layers of inter-connected tests,
developed using the same rhythm, and driven by the desire to support a
business process.

• To assist in planning development iterations, the system features that
support the business process are decomposed into lightweight
descriptions, called user stories. Each story is developed in a test-first
fashion using the same red-green-refactor cycle.

• Red: Functional tests describe the business process and rules, and
generally span the end-to-end workflow of a user goal. The side effect of
creating the functional tests is the system API needed to support it.

Copyright 2008 Jennitta Andrea - Page 7

• Green: Development of the system API starts a chain reaction of unit TDD
cycles. The unit tests are typically developed using different testing tools,
and have a much finer grain of focus.

Functional tests don’t exist in isolation. They are linked to business processes,
user stories, unit tests, and ultimately to the underlying system code.

FTDD: Context Diagram

Functional

Test Tool

Author

����TDD

Requirement

Project

Team

Other

Customer, Product Owner, Subject Matter Expert
(SME), Tester, Business Analyst, Tech Writer, User
Experience (Ux) Designer

Copyright 2008 Jennitta Andrea
Another aspect of “The Big Picture” is to look at all of the project roles that will
interact with the functional test tool. We need to ensure the goals of all of the
different roles are met by the tool.

• The author creates concrete examples of the business rules and business
workflow in the form of functional tests.

• Descriptions of agile processes often associate this to the “Customer” role.
In reality, authoring often happens through collaboration between multiple
roles, including: Customer, Product owner, Tester, Subject Matter Expert,
Business analyst, Tech writer, User Experience Designer.

Copyright 2008 Jennitta Andrea - Page 8

FTDD: Context Diagram

Functional

Test Tool

Author Reader

����TDD

Requirement

Project

Team

Other

Validate: Product Owner, Business Analyst, Compliance
Officer

Develop: Programmer, Tester, Ux Designer, Operations
Support

Other: Tech Writer, Trainer

Copyright 2008 Jennitta Andrea
• Because they are specifications (not just “tests”) … a wide variety of

different roles need to read them. A person must be able to comprehend
functional tests quickly to gain a clear, unambiguous understanding of
system capabilities.

• Roles with subject matter expertise read the tests to validate the
requirement specification is correct and complete.

• Development-oriented roles read the tests to guide their work (Testers
read a test to automate the test; programmers read a test to develop
correct system code; operations support people read a test to fix or
enhance a specific part of the system.)

• Tech writers and Trainers can use tests as “examples” within their
supporting deliverables.

Copyright 2008 Jennitta Andrea - Page 9

FTDD: Context Diagram

Functional

Test Tool

Author Reader

Executor

����TDD

Requirement

Project

Team

Other

FTDD: Tester,
Programmer, SME,
Operational support

Other: Marketing,
Sales engineer, Tech
writer

Copyright 2008 Jennitta Andrea
• Many different roles execute the tests at different times, and for different

reasons:

• Testers run tests in the functional test development environment as they
create the functional test during the “red” part of the cycle

• Developers run tests in their development environment as they create
system code during the “green” part of the cycle

• Subject matter experts run tests from a desktop tool (such as a browser)
to sign off on functional testing for the system.
Other roles can use automated functional tests to enhance their work. For
example, marketing/sales could run tests before they give a demo to set
up demo data, and to ensure the system is stable (avoid the “law of
demos” where the system always crashes)

 Copyright 2008 Jennitta Andrea - Page
10

FTDD: Context Diagram

Functional

Test Tool

Author Reader

Executor Result Consumer

����TDD

Requirement

Project

Team

Other

Programmer, Tester

Operational Support,

Release Manager,
Continuous Integration

System

Copyright 2008 Jennitta Andrea
• The Result Consumer is interested in the fine-grained details about

whether an individual test passed or failed (and why it failed and where it
failed)

• They help answer the questions: am I finished yet, have I broken anything
else, it the system stable enough to promote to other testing
environments.

FTDD: Context Diagram

Functional

Test Tool

Author Reader

Executor Result Consumer Report Consumer

����TDD

Requirement

Project

Team

Other

Scrum Master, Project
Manager, Release
Manager, Compliance
Officer, Auditor

Copyright 2008 Jennitta Andrea

 Copyright 2008 Jennitta Andrea - Page
11

Report Consumers are interested in aggregated test results in order to
track progress and ultimately make a go/no-go decision … how many tests
were run, how many are passing, have all the defects been fixed, what
areas are covered by tests

FTDD

Author FTDE

Read Locate

Display

Execute Multi env

Grouping

Debug

Result Pass/fail

Navigate

History

Report Coverage
(code)

Functional Test Dev Env (FTDE)
•code completion
• dynamic syntax validation
• refactoring
• version control

• search … browse

• IDE, FTDE, build script

• IDE, FTDE

• functional test -> code

• multiple views

• failure -> functional test -> code

• static
• dynamic (priority, failures, area,…)

Copyright 2008 Jennitta Andrea

• There are a lot of core features required just to support the simple notion
of ‘red-green-refactor’. These should be considered MUST HAVE. Some
highlights ….

• First and foremost, a powerful functional test development environment is
essential (and this seems to be missing from pretty much every tool
of the current generation).

o At the very minimum, a FTDE must support all of the powerful
features provided by software development tools (like IntelliJ and
Eclipse) … code completion, intellisense, refactoring.

o Full support for version control features are also a must-have (the
test should not be considered ‘binary’).

o The tags for the functional tests must be synchronized with those
for the system code.

• Tests must be well organized and easy to find through browsing or
searching.

• We must be able to execute the tests from a number different
environments (testers = functional test development environment,
developers = integrated development environment, automated build =
command line).

 Copyright 2008 Jennitta Andrea - Page
12

• We need to be able to arbitrarily group tests into test suites. It is also
important to be able to have the tool support dynamic grouping based on
things like test priority, last-run status, functional area, etc.

• Full debugging features are required from any environment that the test is
run from (integrated development environment, functional test
development environment, browser, …)
Important to be able to navigate from test failures through to functional
tests and all the way through to system code

Requirement Specification

Requirement Specification

Copyright 2008 Jennitta Andrea
We must always remember that we are creating requirement specifications.
This notion raises the bar very high for our discipline and approach to developing
them.

Compared to production code, executable requirements (functional tests) must
be

• maintained as long or longer,

• more readable, easier to write,

• more correct,

• more easily and safely maintained, and

• more locatable.

You may find some of these statements rather startling because on Agile projects
the focus is to remove all excess waste and deliver working code. So why would
we consider functional tests to be more important than production code? The
short answer is that the functional tests are the concrete requirements

 Copyright 2008 Jennitta Andrea - Page
13

specification that drives our development … if the tests are wrong (or out of date,
or difficult to understand) … then our system will be wrong.

I’ll touch on a couple of these key points in the remainder of the presentation.

FT’s must be more readable

1. Start at the Maintain Titles page

2. Page title should be: Video Store Admin – Maintain

Movie Titles

3. Click the Add New Title button

4. Page title should be: Video Store Admin – Add New Title

5. Enter text Star Wars into the field labelled Title

6. Select Science Fiction from Category selection list

7. Select DVD from Media Type selection list

8. Click the Save button

9. Page title should be Video Store Admin – Maintain Movie

Titles

10. Message should be New title successfully added

11. Titles should be listed as:

12. …..

13. …..

14. …..

224VideoChildrenAladdin

000VideoChildrenToy
Story

000DVDSci FiStar
Wars

011DVDSci FiStar
Trek

Rented

In
Store

Copies

Media
Type

Catego
ry

Title

Test Script

TDD

����Requirement

Project

Team

Other

Copyright 2008 Jennitta Andrea
Functional tests as requirements specifications must be highly readable because
so many different roles read them. Readability is especially important because
non-technical subject matter experts are relied upon to validate correctness and
completeness … these specifications will drive what is built in the system.
I’ve come to realize that the most unfortunate thing about the term test-driven-
development is that it has the word TEST in it.
The sample shown on the screen is a traditional detailed functional test script. I
wonder how many of you out there can you identify the business rule being
expressed here? Would you sign off that it is correct and complete?

… I’d be careful if I were you … It actually has several very serious omissions
and flaws … but you can’t see the forest for the trees.
Even teams using state-of-the-art tools like FIT and WATIR are still producing
specifications like this.

 Copyright 2008 Jennitta Andrea - Page
14

FT’s must be more readable

1. Start at the Maintain Titles page

2. Page title should be: Video Store Admin – Maintain

Movie Titles

3. Click the Add New Title button

4. Page title should be: Video Store Admin – Add New Title

5. Enter text Star Wars into the field labelled Title

6. Select Science Fiction from Category selection list

7. Select DVD from Media Type selection list

8. Click the Save button

9. Page title should be Video Store Admin – Maintain Movie

Titles

10. Message should be New title successfully added

11. Titles should be listed as:

12. …..

13. …..

14. …..

224VideoChildrenAladdin

000VideoChildrenToy
Story

000DVDSci FiStar
Wars

011DVDSci FiStar
Trek

Rented

In
Store

Copies

Media
Type

Catego
ry

Title

Test Script

1. Add Movie Title (Star Wars, Sci Fi, DVD)

2. Verify Title Inventory

3. Add Movie Title (Star Wars, Sci Fi, DVD)

4. Verify Add Movie Title Message (

“Error: The movie title Star Wars already

exists”)

224VideoChildr
en

Aladdi
n

000VideoChildr
en

Toy
Story

000DVDSci FiStar
Wars

011DVDSci FiStar
Trek

Rente
d

In
Store

Copie
s

Media
Type

Categ
ory

Title

Domain Specific Language

TDD

����Requirement

Project

Team

Other

Copyright 2008 Jennitta Andrea
• A test script can be made significantly more readable by creating a

Domain Specific (Testing) Language … DSTL (e.g. line 1 is equivalent to
line 1 – 8 of the test script).

• The key to producing a good DSTL is to ensure the vocabulary of the
specification is declarative (focuses on WHAT, not HOW), and is
expressed as business domain goals and real-world objects instead of
tactical user interaction steps.

• Although this is a significant improvement, the reader must still piece
together the business rule from these high level statements.

 Copyright 2008 Jennitta Andrea - Page
15

FT’s must be more readable

1. Start at the Maintain Titles page

2. Page title should be: Video Store Admin – Maintain

Movie Titles

3. Click the Add New Title button

4. Page title should be: Video Store Admin – Add New Title

5. Enter text Star Wars into the field labelled Title

6. Select Science Fiction from Category selection list

7. Select DVD from Media Type selection list

8. Click the Save button

9. Page title should be Video Store Admin – Maintain Movie

Titles

10. Message should be New title successfully added

11. Titles should be listed as:

12. …..

13. …..

14. …..

224VideoChildrenAladdin

000VideoChildrenToy
Story

000DVDSci FiStar
Wars

011DVDSci FiStar
Trek

Rented

In
Store

Copies

Media
Type

Catego
ry

Title

Test Script

1. Add Movie Title (Star Wars, Sci Fi, DVD)

2. Verify Title Inventory

3. Add Movie Title (Star Wars, Sci Fi, DVD)

4. Verify Add Movie Title Message (

“Error: The movie title Star Wars already

exists”)

224VideoChildr
en

Aladdi
n

000VideoChildr
en

Toy
Story

000DVDSci FiStar
Wars

011DVDSci FiStar
Trek

Rente
d

In
Store

Copie
s

Media
Type

Categ
ory

Title

Domain Specific Language

1. Given inventory contains:Star Wars, scifi, DVD

2. When add movie title: Star Wars, sci fi, DVD

3. Then inventory unchanged

4. And message: “Error: The movie title Star Wars

already exists”)

Declarative, Behavior Driven

TDD

����Requirement

Project

Team

Other

Copyright 2008 Jennitta Andrea

Adding some simple structuring statements to a DSTL helps to express the
business rule more clearly.

• The given…when…then style shown here is suggested by Behavior
Driven Development.

• Brian Marick’s use of the term “example” is also very useful because it
helps to remind us to keep the specifications concrete, succinct, and
unambiguous.

Specifications like this can be captured in many different formats:

• Tabular

• Textual

• Graphical (many variations of this … including various UML notations.)

• Storyboard of workflow

• Wireframe of UI.

 Copyright 2008 Jennitta Andrea - Page
16

FTDD Req
Spec

Author FTDE 3rd party

DSTL

Format

Read Locate

Display

Locate+

Execute Multi env

Grouping

Debug

3rd party

personas

Result Pass/fail

Navigate

History

Navigate+

Report Coverage
(code)

Coverage
(req)

• excel, word, drawing tool, etc

• navigation: req/story <-> test
• search: tests covering req/story

• failure -> functional test -> DSTL -
> code

Domain Specific Test Lang (DSTL)
• navigate … refactor … uses of …

completion … dynamic validation …

• browser, etc

• declarative run-time variations

Copyright 2008 Jennitta Andrea

• Again, features to support functional tests as requirement specifications
should be considered MUST HAVE. Some highlights ….

• Rich support for a Domain Specific Testing Language is essential. This
includes having the FTDE command completion, syntax validation,
refactoring, and navigation capabilities extended to the DSTL elements.

• The “look and feel” (that is the format and semantics) of the specification
language should be accessible to the variety of non-technical participants.
These participants should not be forced to use developer-specific tools or
languages.

• Remember, functional tests act as the concrete examples within the
overall requirement specification. It is necessary to tie these examples
into a bigger picture description provided by diagrams, descriptions,
workflows, etc, as well as the planning strategy that drive out development
(user stories). Navigation and dynamic searching to and from these other
artifacts is required.

• Persona modeling helps ensure the system design meets the needs of a
wide variety of user types (for example expert vs novice users, or local vs
distributed users). The same core test can be executed in a variety of
different ways driven by persona-specific characteristics.

 Copyright 2008 Jennitta Andrea - Page
17

Project Characteristics

Project Characteristics

Copyright 2008 Jennitta Andrea
Each project is unique, and the approach to FTDD must be adapted to fit the
characteristics of the project:

• Criticality (what happens if something goes wrong … inconvenience vs
loss of money vs injury or loss of life)

• Complexity of the domain

• How domain is best expressed (formulas, tabular, graphical, … take your
cues from what the subject matter experts draw on the white board when
explaining things).

• Characteristics of the system (distributed, concurrent, etc)
In addition, we must apply long-term thinking to our approach to functional test
driven development because our functional tests must live as long as the system
does! This is a new perspective on things, and has huge implications for tool
support.

 Copyright 2008 Jennitta Andrea - Page
18

FT’s must live as long or longer.

Project team

Time

R 1

Greenfield

Development

Greenfield

Phase

multiple years, multiple projects, and multiple teams

TDD

Requirement

���� Project

Team

Other

Copyright 2008 Jennitta Andrea
• As I said earlier, functional test driven development goes beyond the red-

green-refactor cycle, which is focused on a single piece of functionality.
Indeed, functional test driven development is a discipline that affects the
whole lifecycle of an application, often spanning multiple years, multiple
projects, and multiple teams.

• Let’s trace the typical lifecycle of a single application.

• We start with a green-field project developed in a test driven fashion by a
dedicated project team.

 Copyright 2008 Jennitta Andrea - Page
19

Minor Enhancements

& Bug Fixes

R 1.1 R 1.2 R 2.1 R 2.2

Operations

Phase

FT’s must live as long or longer.

Project team

Operations team

Time

R 1

Greenfield

Development

Greenfield

Phase

multiple years, multiple projects, and multiple teams

TDD

Requirement

���� Project

Team

Other

Copyright 2008 Jennitta Andrea
• Once the application is released into production (R

• 1), the responsibility for the code and the automated tests is transitioned to
an operations team.

• We expect that the tests will be tweaked when the operations team fixes
defects or develop minor enhancements to the system (R1.1, R1.2).

• What happens in reality is that the tests typically ‘die’ after the hand-off …
for many different reasons

o The operations team is not trained in test driven development
o The operations team does not buy into test driven development …

they don’t understand the value, and thus don’t run/maintain the
tests

o The tests weren’t written with them in mind:
� The operations team is VERY busy (supporting many

different applications), so if it takes too long/too much effort
to find all of the related tests, then things will fall through the
cracks

� if it takes too long to read/understand/maintain the tests,
then they will take the path of least resistance to fixing a
production problem.

 Copyright 2008 Jennitta Andrea - Page
20

Minor Enhancements

& Bug Fixes

R 1.1 R 1.2

Operations

Phase

FT’s must live as long or longer.

Project team

Operations team

Time

R 1

Greenfield

Development

Greenfield

Phase

Major

Enhancement

R 2
F

reez
e

merge

Enhancement

Phase

multiple years, multiple projects, and multiple teams

TDD

Requirement

���� Project

Team

Other

Copyright 2008 Jennitta Andrea
• When major enhancements are required that are too large for the

operations team to tackle, a new project team is formed.

• The application code is branched into two parallel test-driven-development
streams (one for the enhancement and the other for operations). Their
work will be merged together prior to the production release (R2).

• Advanced support for merging branched functional tests is critical
o Firstly, we just need to be able to merge the tests together (some

test syntaxes and technologies don’t facilitate this very well)
o More importantly, we need tool support to help people make the

right decisions about how to merge the tests together to come out
with the intended semantics … we have to make sure our safety net
doesn’t have any holes in it!

 Copyright 2008 Jennitta Andrea - Page
21

Minor Enhancements

& Bug Fixes

R 1.1 R 1.2 R 2.1 R 2.2

Operations

Phase

FT’s must live as long or longer.

Project team

Operations team

Time

R 1

Greenfield

Development

Greenfield

Phase

Major

Enhancement

R 2

F
reez

e

merge

Enhancement

Phase

Legacy Upgrade

R 3

F
reez

e

merge

Legacy

Phase

multiple years, multiple projects, and multiple teams

TDD

Requirement

���� Project

Team

Other

Copyright 2008 Jennitta Andrea

• Over time, the application becomes out-dated (legacy) and may need to
be ported to a different technology.

• Again, a separate project team undertakes this major endeavor,
performing test-driven porting to build a new application using the existing
legacy tests as the specification.

• An effective strategy for test-driven-porting is to have a single functional
test run against the old system (as the baseline … this validates the test),
and the new system (as validation that we’ve built the same thing).

• This creates the need for a single test to be able to run against two
different tools, technologies, and potentially touch points.

 Copyright 2008 Jennitta Andrea - Page
22

FTDD Req
Spec

Proj
Context

Author FTDE 3rd party

DSTL

Format

Format+

Record

Branching

Read Locate

Display

Locate+ Locate++

Execute Multi env

Grouping

Debug

3rd party

personas

touch-pts

Result Pass/fail

Navigate

History

Navigate+

Report Coverage
(code)

Coverage
(req)

• diff team -> diff format
• domain -> multi modal

• same test against
• ui (legacy)
• api (port)

• find all functional tests
associated with code

• not green-field
• end-end workflow

• branch … compare …
merge (test + DSTL)

Copyright 2008 Jennitta Andrea
• The multiple handoffs of the tests between different teams over time drive

the need for some advanced features.

• These features can be considered to be NICE TO HAVE, and certainly
don’t apply to every situation (but when you need them, you want to have
all of the ones you need together in one tool).

• The format of the test should be driven by how to best express the
concepts within the domain, and the type of the application.

o For example, a data-oriented application may be best expressed in
a tabular format, while a workflow oriented application may be best
expressed using UML activity diagrams and decision trees.

o Pushing this concept to the limit … some tests may need to be
multi-modal … text, graphics, tables all in the same test.

• Making the tests easy to find is key to enabling operations support people
to continue to use FTDD in their hectic world. Often they will be working
backwards from an area in the system code that is broken. They should
be able to find all functional tests that are associated with this area of the
code in order take a TDD approach to fixing the problem

• Remember from our earlier statements … functional tests must be easier
to maintain than production code. You have to make sure your safety net
has high availability, even when the test suite is being refactored or
modified. Branching and merging functional tests and the associated
DSTL is a very important capability

• To support test-driven porting of legacy systems, we need the ability to run
the same test against multiple different touch points, and multiple different
applications. This implies run-time configurability of the touch point.

 Copyright 2008 Jennitta Andrea - Page
23

Team Characteristics

Team Characteristics

Copyright 2008 Jennitta Andrea

Layering on top of the uniqueness of projects is the fact that each team is also
unique, consisting of:

• Different levels of domain experience

• Individual style of learning drives preference for format of functional test

• Different mix of roles and skill sets

• Different levels of stability within the team members

 Copyright 2008 Jennitta Andrea - Page
24

FTDD Req
Spec

Proj
Context

Team
Context

Author FTDE 3rd party

DSTL

Format

Format+

Record

Branching

Format++

Read Locate

Display

Locate+ Locate++ Format++

MultiDetail

Execute Multi env

Grouping

Debug

3rd party

personas

touch-pts

Result Pass/fail

Navigate

History

Navigate+

Report Coverage
(code)

Coverage
(req)

user specific
• tabular
• textual
• graphical
• wire frame

Diff fmt than
original

Inline DSTL

Copyright 2008 Jennitta Andrea
• Because wide variety of different people will read and write a test over it’s

lifetime, we need to have a great deal of flexibility and configurability within
a tool related to the format of the test.

o If we separate the format of the test from its content, then the test
can be read/written in the format that best suits the person at that
point in time.

o Being able to view the test effectively from a variety of different
levels of detail also is important to support user variability (some
need the overview, some need the low level details).

 Copyright 2008 Jennitta Andrea - Page
25

Other Needs

Other Needs

Copyright 2008 Jennitta Andrea
There are many opportunities to enrich the software development process, as
well as the business process that the software is intended to support:

• Management

• Training

• Marketing

• etc
We can also adorn the functional tests to support other types of testing:

• Exploratory

• Performance

• Usability

• etc

 Copyright 2008 Jennitta Andrea - Page
26

FTDD Req
Spec

Proj
Context

Team
Context

Other

Author FTDE 3rd party

DSTL

Format

Format+

Record

Branching

Format++ Decorate

Meta data

Read Locate

Display

Locate+ Locate++ Format++

MultiDetail

Execute Multi env

Grouping

Debug

3rd party

personas

touch-pts What if

Stop/start

Screens

Result Pass/fail

Navigate

History

Navigate+

Report Coverage
(code)

Coverage
(req)

Progress

Audit

• Performance … Ux ….

• assigned to … status …
priority …

• business analysis (impacts
of proposed change)

• exploratory testing … demo
… training …

• marketing … training …

Copyright 2008 Jennitta Andrea
• Functional tests can be decorated with other attributes so that the tests

can do double-duty: for example they can also act as performance tests.
We will need to be able to specify whether it is being run as a functional
test (thus turn on all assertions) or a performance test (thus turn down
assertions and turn on the timings … and keep a record of the timings).

• Enabling other roles to run the tests and to start and stop them at will will
help to support getting test data set up and getting the system into a
particular state. Exploratory testing, demos, training, etc can all benefit
from this.

 Copyright 2008 Jennitta Andrea - Page
27

FTDD Req
Spec

Proj
Context

Team
Context

Other

Author FTDE 3rd party

DSTL

Format

Format+

Record

Branching

Format++ Decorate

Meta data

Read Locate

Display

Locate+ Locate++ Format++

MultiDetail

Execute Multi env

Grouping

Debug

3rd party

personas

touch-pts What if

Stop/start

Screens

Result Pass/fail

Navigate

History

Navigate+

Report Coverage
(code)

Coverage
(req)

Progress

Audit

Copyright 2008 Jennitta Andrea
Here’s the full summary just for reference … NOTE: there’s still work to do to fill
this out (look for workshops at agile conferences and specific workshops like the
Agile Alliance Functional Test Tool Workshop)

Envisioning Next Generation

Core:

FTDD
����
����
����

Req’s
����
����
����

Context:

Project
����
����
����

Team
����
����
����

Other:
����
����
����

����
����
����

����
����
����

����
����

����

Copyright 2008 Jennitta Andrea
This vision of the next generation isn’t calling for a lot of ‘wow’ or ‘wizbang’
features to be sprinkled around. Instead, the message is that we need to take a

 Copyright 2008 Jennitta Andrea - Page
28

deep breath, and possibly step back a little bit so that we can see the big picture
of the complex functional test driven development process.

A priority should be to ensure that the essential core capabilities are well
supported. Then the next step is to build a coherent mix of features that fully
supports a particular project and team context.
There are many ways forward

• enhance existing tools a step at a time

• cooperatively build a single framework that is configurable with plug/play
elements

• cooperatively build multiple tools that can work with a single generic test
specification

• ….

The key to moving forward is through understanding the big picture and breaking
down walls between tools.

jennitta@theandreagroup.ca www.theandreagroup.ca

Copyright 2008 Jennitta Andrea

“Envisioning the Next Generation
Functional Testing Tools”

A call to improve the state of the art of functional test driven

development by: reflecting on where we are now, describing

processes and scenarios within the full application lifecycle, and
painting a vision for the next generation functional testing

tools(IEEE Software, May 2007)

“Brushing Up On Functional Test
Effectiveness”

Explains how to make a functional test into an effective

requirements specification by refactoring a test script into a
declarative, succinct, autonomous, sufficient, and locatable

specification (Better Software, November/December 2005)

“Some Assembly Required:
Piecing Together the Truth About
TDD”

Teams that naively adopt test driven development frequently run
into serious problems. This article applies a magnifying glass to
the TDD fine print and suggests paths to safely navigate some
key landmines (Better Software, January 2008)

Agile Alliance Functional Test
Tool Program (aa-ftt)

http://tech.groups.yahoo.com/group/aa-ftt/ Agile Alliance
Functional Test Tool Program (aaftt) yahoo discussion group.
The first workshop was held in October 2007. Videos of demos
and lightening talks can be found at
http://video.google.com/videosearch?q=AAFTT

Here is just a quick reference list to some articles that provide more details about
the topics covered within this presentation. There is also a link to the agile
alliance functional testing tools workshop resources, from which many of the
ideas in this presentation were also drawn.

